Biomethylation of Tl(I) Compounds

F. HUBER and H. KIRCHMANN

Lehrstuhl für Anorganische Chemie II, Universität Dortmund, D 4600 Dortmund 50, BDR Received May 20, 1978

In a previous paper [1] we showed that microorganisms can methylate Pb^{2*} under anaerobic conditions to give Me_4Pb ($Me = CH_3$). We therefore decided to examine whether Tl⁺, isoelectronic to Pb^{2^+} is also amenable to biomethylation by microorganisms and – if Tl⁺ is biomethylated – it also increases its formal oxidation number. This question was of great interest, since biomethylation of Pb^{2^+} was the only example of an *in vivo* methylation during which the formal oxidation number of the metal ion is increased. During biomethylation of mercury compounds [2] (Hg being the other neighbour of Tl in the periodic system) there is no change of the oxidation state.

Information about experiments on biological transformation of thallium is scarce. It was shown that methyl-vitamin B_{12} can be demethylated *in vitro* by Tl(II) [3, 4], but not by Tl(I) [3]. however the nature of the methylated Tl species has apparently not been established (from spectral titrations it was concluded that MeTl²⁺ is a product of the demethylation of Me-cobaloxime by Tl³⁺; there were no indications of the formation of Me₂Tl^{*} [5]). From experiments with methyl mercury it was suggested [6] that thallium (no oxidation number given; obviously Tl(III) [7]) will be methylated in the environment. The possibility of Tl(I)-transformation by an aerobic bacteria culture, albeit with no specification of active Tl-containing agents, was mentioned in a preliminary transport study [8].

Corresponding to our experiments [1] on the biomethylation of Pb^{2+} we incubated (in 250 ml gas wash bottles in an N₂ atmosphere and under exclusion of O₂ and light) bacteria from the anaerobic sediment of a natural small lake in 100 ml dilution water [9, 10] with added nutrient* for 10 days at 30 °C. During this time – starting on the third day – TlOAc (OAc = acetate) was added in portions up to a maximum concentration of 1g/l. 1.9 g CaCO₃ were added to neutralize the acid produced by metabolic

processes. After 7 to 21 days 10 ml samples were taken, filtered through a diaphragm and analyzed. The filtered solution contained small amounts of Me_2Tl^+ besides Tl(I). Me_2Tl^+ was complexed with 1-(2-pyridylazo)-2-naphthol (PAN), after masking Tl(I) with EDTA. The Me_2Tl^+ -PAN complex was extracted with CHCl₃ at pH 10-12 and determined spectrophotometrically at 570 nm [11]. The results showed that, using solution I*, after 14 and 21 days 3 and 10 μ g Me₂Tl⁺/ml respectively had been formed. Using solution II* 36 μ g Me₂Tl⁺/ml were detected after 21 days; this corresponds to a conversion of T1⁺ to Me_2Tl^+ of about 3%. However in experiments with peptone as nutrient (meat extract, Merck) only about 1-2 μ g Me₂Tl⁺/ml were formed after 21 days. This lower yield when using peptone as nutrient agreed with our experience gained during biomethylation of Pb^{2+} . Me_2Tl^+ was the only methylated Tl-species detected. This is understandable in view of the normal behaviour of alkylthallium compounds: monomethylthallium compounds in general are unstable [12] and Me₃Tl decomposes instantaneously in water to form Me₂TlOH and CH₄ [13]. Me₂Tl⁺ is stable in aqueous solution.

The experiments do not allow to propose a certain mechanism of the biological transformation of Tl⁺ to Me_2Tl^+ . Various pathways are conceivable. Methylation of Tl⁺ (e.g. by Me⁻ from methyl-vitamin B_{12} [7]) would give MeTl, which however is unknown. We could not detect elementary Tl in the samples, so that it can be concluded that Me₂Tl^{*} is not formed by disproportionation of an intermediate MeTl. We now try to find out, whether Tl^+ – in complexed form - is methylated by a CH_3^- donor (methyl-vitamin B_{12}) and simultaneously oxidized by an appropriate electron acceptor (eventually involving radical intermediates) or whether electrophilic attack by CH₃ might be responsible for the formation of a monomethylthallium(III) derivative as a primary product; monomethylthallium(III) compounds can either redistribute producing Me₂Tl⁺ [14], or might be methylated to Me₂Tl⁺ (or to Me₃Tl, which would however hydrolyze to give Me₂Tl). We recently showed using alkyllead compounds, that direct biomethylation of alkylmetal compounds is also feasible in principle [15].

 Me_2TI^* compounds are less toxic to bacteria than TI^* , so biomethylation of TI^* would result in a detoxification of the bacterial environment. This must however not of necessity be the determining reason for the occurrence of the methylation, as biomethylation of Pb^{2^*} leads to Me_4Pb , which is much more toxic to bacterial cultures than lead(II) compounds [15].

^{*}In 100 ml dilution water [9, 10] had been dissolved: 0.052 g K₂HPO₄·3H₂O, 0.01 g MgCl₂·6H₂O, 0.1 g NH₄Cl and either 1.0 g C₂H₅OH (Solution I) or 1.0 g Ca(OAc)₂ (Solution II).

No methylation of Tl^+ has been observed under aerobic conditions.

Acknowledgement

The support of the Herbert-Quandt-Stiftung and of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

- 1 U. Schmidt and F. Huber, Nature, 259, 157 (1976).
- S. Jenssen and A. Jernelöv, Nordforsk Miljoevardssekv. Publ., 14, 3 (1968); Nature, 223, 753 (1969); J. M. Wood, F. S. Kennedy and C. G. Rosen, Nature, 220, 173 (1968).
- 3 G. Agnes, S. Bendle, H. A. O. Hill, F. R. William and R. J. P. Williams, *Chem. Comm.*, 850 (1971).

- 4 G. Agnes, H. A. O. Hill, J. M. Pratt, S. C. Ridsdale, F. S. Kennedy and R. J. P. Williams, *Biochim. Biophys. Acta*, 252, 207 (1971).
- 5 P. Abley, E. R. Dockal and J. Halpern, J. Am. Chem. Soc., 95, 3166 (1973).
- 6 J. M. Wood, Naturwiss., 62, 357 (1975).
- 7 J. M. Wood, Science, 197, 329 (1977).
- 8 T. R. Schneiderman, R. E. Garland and H. Drucker, Annual Meeting Amer. Soc. Microbiol., Chicago, 1974, Abstracts, E 8.
- 9 Deutsche Einheitsverfahren zur Wasseruntersuchung, H 5,
 6; L 12 (edit. by GDCh., Fachgruppe Wasserchemie,
 Verlag Chemie, Weinheim, 1972).
- 10 Standard Methods for the Examination of Water and Wastewater, 13th ed., 489 (edit. by APHA, AWWA, WPCF, Washington, 1971).
- 11 H. Kirchmann and F. Huber, Z. analyt. Chem., in press.
- 12 A. G. Lee, "The Chemistry of Thallium", Elsevier, Amsterdam, London, New York, 1971.
- 13 C. R. Hart and C. K. Ingold, J. Chem. Soc., 4372 (1964).
- 14 U. Pohl and F. Huber, unpublished results.
- 15 U. Schmidt and F. Huber, unpublished results.